Betti Numbers of the Moduli Space of Rank 3 Parabolic Higgs Bundles

نویسنده

  • O. GARCÍA-PRADA
چکیده

Parabolic Higgs bundles on a Riemann surface are of interest for many reasons, one of them being their importance in the study of representations of the fundamental group of the punctured surface in the complex general linear group. In this paper we calculate the Betti numbers of the moduli space of rank 3 parabolic Higgs bundles, using Morse theory. A key point is that certain critical submanifolds of the Morse function can be identified with moduli spaces of parabolic triples. These moduli spaces come in families depending on a real parameter and we carry out a careful analysis of them by studying their variation with this parameter. Thus we obtain in particular information about the topology of the moduli spaces of parabolic triples for the value of the parameter relevant to the study of parabolic Higgs bundles. The remaining critical submanifolds are also described: one of them is the moduli space of parabolic bundles, while the remaining ones have a description in terms of symmetric products of the Riemann surface. As another consequence of our Morse theoretic analysis, we obtain a proof of the parabolic version of a theorem of Laumon, which states that the nilpotent cone (the preimage of zero under the Hitchin map) is a Lagrangian subvariety of the moduli space of parabolic Higgs bundles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moduli Spaces of Parabolic Higgs Bundles and Parabolic K(d) Pairs over Smooth Curves: I

This paper concerns the moduli spaces of rank two parabolic Higgs bundles and parabolic K(D) pairs over a smooth curve. Precisely which parabolic bundles occur in stable K(D) pairs and stable Higgs bundles is determined. Using Morse theory, the moduli space of parabolic Higgs bundles is shown to be a noncompact, connected, simply connected manifold, and a computation of its Poincaré polynomial ...

متن کامل

Co - Higgs bundles on P 1 Steven Rayan

Co-Higgs bundles are Higgs bundles in the sense of Simpson, but with Higgs fields that take values in the tangent bundle instead of the cotangent bundle. Given a vector bundle on P, we find necessary and sufficient conditions on its Grothendieck splitting for it to admit a stable Higgs field. We characterize the rank-2, odd-degree moduli space as a universal elliptic curve with a globally-defin...

متن کامل

Co - Higgs bundles on P 1

Co-Higgs bundles are Higgs bundles in the sense of Simpson, but with Higgs fields that take values in the tangent bundle instead of the cotangent bundle. Given a vector bundle on P, we find necessary and sufficient conditions on its Grothendieck splitting for it to admit a stable Higgs field. We characterize the rank-2, odd-degree moduli space as a universal elliptic curve with a globally-defin...

متن کامل

Quantization of a Moduli Space of Parabolic Higgs Bundles

Let MH be a moduli space of stable parabolic Higgs bundles of rank two over a Riemann surface X . It is a smooth variety over C equipped with a holomorphic symplectic form. Fix a projective structure P on X . Using P , we construct a quantization of a certain Zariski open dense subset of the symplectic variety MH .

متن کامل

Higgs Bundles and Local Systems on Riemann Surfaces

1. Preface 1 2. The Dolbeault Moduli Space 3 2.1. Higgs bundles 3 2.2. The moduli space 8 2.3. The Hitchin-Kobayashi correspondence 13 3. The Betti Moduli Space 22 3.1. Representation varieties 22 3.2. Local systems and holomorphic connections 23 3.3. The Corlette-Donaldson theorem 27 3.4. Hyperkähler reduction 32 4. Differential Equations 34 4.1. Uniformization 34 4.2. Higher order equations 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004